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Abstract
The study explores amodel called Relativistic DegenerateMagneto-RotatingQuantumPlasma
(RDMRQP), which comprises a static heavy nucleus, an inertial non-degenerate light nucleus, and
warmnon-relativistic or ultra-relativistic electrons. The focus is on observing the emergence of
Nucleus-Acoustic Envelope Solitons (NAESs). Using the reductive perturbationmethod, aNonlinear
Schrödinger equation (NLSE) is derived to characterize the properties ofNAESs.We have analysed the
Peregrine breather soliton solution. The investigation reveals that the temperature ofwarmdegenerate
species, plasma system’s rotational speed, and the presence of heavy nucleus species can alter the
fundamental features (height andwidth) ofNAESs in theWDMRQP system. The study emphasizes
the existence of only positiveNAwave potential. Additionally, a phase plane analysis is conducted to
gain a deeper understanding of the parametric dependencies. Through detailedmathematical and
numerical analysis, the study avoids overloadingwith complexmathematics while demonstrating
parametric dependence via phase portrait analysis. The research augments the envelop solitonmodel
with breathermode solutions and discussesmodulation instability using the Benjamin-Feir Index,
highlighting the significance of solitons in star formation. Envelop solitons, stable waves within stars
and proto-stars, influence energy transport and stellar evolution, playing a crucial role in the accretion
process and formation of stable structures. Keyfindings include the effects of various parameters on
NAESs’ generation and propagation inwhich non-relativistic and ultra-relativistic electrons support
NAESs, with amplitude andwidth influenced by temperature, rotational frequency, inclination angle,
and the presence of a static heavy nucleus. The research is applicable to hotwhite dwarfs and neutron
stars, suggesting further exploration of quantum effects and non-planar or arbitrary amplitude
NAESs.

1. Introduction

Rotationalmotion of plasma is crucial in astrophysics, significantly impacting the behavior and evolution of
celestial bodies. In stars, it affects their structure andmagnetic activity, while in accretion disks around black
holes and neutron stars, it drives intense radiation and relativistic jets. During star formation, rotationwithin
molecular clouds leads to protostellar disks, essential for star and planetary systembirth. Understanding rotating
plasma dynamics provides insights into galactic structures and interstellarmatter. Also in laboratories,
magnetically confined rotating plasma is vital for nuclear fusion research.Magnetic confinement in devices like
tokamaks and stellarators enhances stability and performance, emulating stellar fusion processes. Additionally,
studying relativistically degenerate plasma informs the dynamics of stellar collapse, neutron star structure, and
supernova events. Astrophysical jetsmanifest across various scales, from the early phases of star formation to the
late stages of dyingmassive stars and compact objects [1]. They are observed in phenomena such as supernovae,
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gamma-ray bursts, pulsars, pre-planetary nebulae, planetary nebulae, andmicroquasars [2–9]. The engines of
gamma-ray bursts [10, 11], microquasars [12], and active galactic nuclei power these relativistic jets. Despite
extensive observations, spatially resolved jet observations below certain scales remain scarce, with recent
exceptions like theM87 jet observed by the EventHorizon Telescope [13]. Understanding jet physics involves
threemain regimes: engine and launch, propagation and collimation, and dissipation and particle acceleration.
Magnetic fields are crucial in transferring energy and collimating jets, especially in the launch region. Various
magnetically dominatedmechanisms influence particle acceleration and jet behavior. Experimental plasma
physics explores nucleus-acoustic waves in relativistic degeneratemagneto-rotating plasma, relevant to
environments likewhite dwarfs and neutron stars.

In the past, it waswidely believed that the core of white dwarfs exclusively comprised heliumnuclei.
However, subsequent observations revealed the presence of carbon or oxygen nuclei in their cores.White dwarfs
consist of degenerate electron species, lighter nuclear species (hydrogen isotopes), and heavier nuclear species
(carbon or oxygen). The electrons are relativistically degenerate in the inner core and non-relativistically
degenerate in the outermantle [14]. This study investigated nucleus-acoustic envelope solitary structures in a
magneto rotating plasma (MRP)with strongly coupled non-degenerate heavy nuclei, weakly coupled degenerate
light nuclei, andweak-relativistically (or ultra-relativistically)degenerate electrons [15]. TheNonlinear
Schrodinger equation, describing the evolution of the envelope solitary structures was analytically derived and
numerically solved in amagnetised rotating,multi-component degeneratemagneto plasma system [16, 17]. The
strong interaction among heavy nuclear species is suggested by some authors as the source of dissipation, leading
to the formation of nucleus-acoustic shock structures (NASS)with electrostatic and gravitational potentials
[18–20]. Recent research has further explored amplitude-modulated heavy nucleus-acoustic envelope solutions
(HNAESs) in a degenerate relativisticmagneto rotating plasma (DRMRP) system [21], considering
relativistically degenerate electrons, light nuclei, and non-degeneratemobile heavy nuclei. The cubic nonlinear
Schrödinger equation and a dispersion relation for heavy nucleus-acoustic waves (HNAWs)were derived in this
context. Additionally, phase plane analysis have been conducted on the nonlinear Schrodinger equation (NLSE)
to understand the effect of parameters on the stability.We aremotivated to study this problemon the following
grounds: (i)All stellar bodies rotate about an axis. Sometimes they are along themagnetic field direction but in
most cases it is aligned at an angle, (ii) in nuclear reactors, tokamaks, stellarators etc the orbit of rotation of
plasma particles are aligned obliquely withmagnetic field or they themselves get disoriented during rotation.

We investigate the dynamics of linear nucleus-acoustic waveswithin a relativistic degeneratemagneto
rotating plasma system (DMRP) characterized by strong coupling. This system comprises strongly coupled non-
degenerate heavy nuclei likemetal nuclei, weakly coupled degenerate non-relativistic light nuclei like hydrogen,
helium, lithium etc, and non-relativistically or ultra-relativistically degenerate electrons. Our focus is on a study
of amplitudemodulation and formation of envelope solitons. Through a linear perturbation analysis, we explore
the nature of the instability associatedwith nucleus-acoustic waves in this degeneratemagneto rotating plasma
system.Heavy nuclei are almost immobile when compared to electrons and their density is also lowdue to the
plasma under consideration have lesser heavy nuclei that take part in the dynamics of the system in
consideration.

In ourmodel, nucleus-acoustic wavesmanifest as propagating longitudinal oscillations resulting from the
combined effects of inertia from the heavy nuclei and elasticity contributed jointly by the relativistic degeneracy
pressure of lighter electrons and the classical thermal pressure of lighter nuclei. It’s worth noting that the thermal
pressure from the lighter nuclei is significantly smaller than its electronic counterpart. Consequently, the
nucleus-acoustic wave is solely driven by the interaction between heavy nuclei (as inertial species) and
degenerate electrons (as thermal species), giving rise to a phase velocity for the longitudinal oscillations to
propagate as (vp). This coupling of dynamics between heavy nuclei and degeneracy pressure is expressed in a
closed form. The strong coupling of non-degenerate heavy nuclei is a result of their high charge and extremely
low temperature, leading to a ‘coupling parameter’much larger than unity, indicative of viscoelastic behavior
which can be of great importance in compact astrophysical environments with high population density and low
temperature, such aswhite dwarfs and neutron stars. The physicality of the problem can be understood from the
works on star formation, planetary jets etc [1, 3, 8, 12, 13].

Keeping inmind the the scope of the journal and to retain the ‘physics’ part of ourfindingwe do not include
toomuch ofmathematics in the text body.We prefer keeping the article crisp and physics oriented. The paper is
organised in the followingmanner. In section 2we present themodel equations. In the next section (3)we carry
out the linear and nonlinear analysis. The derivation and the solution of theNonlinear Schrodinger equation
(NLSE) is presented in the sections 3.2, 3.3 and 3.4. In subsequent section 4we present the phase plane analysis
and study the parametric dependence for different cases. Finally we conclude the findings in section 5. In a
nutshell themotivation behind thework is to study the dependence of alignment of the rotational axis with the
magnetic axis, the speed of rotation and the relative composition of themulti nuclear plasma.
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2.Model and governing equations

Weexamine a RotatingDegenerateMagnetizedRotating Plasma (RDMRP) system comprising an immobile
heavy nucleus with low density, an inertial non-degenerate light nucleus, and awarmdegenerate electron to
investigate the fundamental characteristics ofNucleus-Acoustic SurfaceWaves (NASWs). In this plasma system
(figure 1), a rotationalmagnetic field

 
=B B z0( ) is present, oriented at an angle θ around the z-axis. The charge

neutrality condition for this three-dimensionalmagneto-rotating degenerate plasma is expressed as
Zhnh0+ Zlnl0≈ ne0, whereZh,Zl, nh0, nl0 and ne0 represent the charge state of the heavy nucleus, charge state of
the light nucleus, unperturbed number density of the heavy nucleus, unperturbed number density of the light
nucleus, and unperturbed number density of electrons, respectively. It is important to note that the heavy
nucleus has a considerably lower number density compared to the light nucleus and electrons.Moreover, in this
degenerate plasma system, the heavy nucleus is assumed to be static and immobile due to its lownumber density.
The dynamics of nonlinearNucleus-Acoustic waves are described by a set of normalized equations [22]:
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The normalization scheme is given in the appendix.ωcl&ωr are the light nuclear cyclotron frequency and the
rotational frequency of the star respectively. δ is the ratio of heavy nuclear charge density to that of lighter nuclei
given by:

d =
Z n

Z n
. 4h h

l l

0

0

( )

3. Linear andnonlinear analysis

3.1. Linear dispersion relation
In order to obtain the evolutionary equationwhich leads to the formation of envelope solitonwe employ
multiple scale perturbation theory. For this we use stretching of the space and time coordinates as:

Figure 1. Schematic diagramof a rotating star and itsmagneticfield orientationwith respect to the spin axis.
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x l t= + - =l x l z t t& . 5x z
1
2

3
2 ( ) ( )

Wenext use the standard technique of using Fourier series expansion coupledwith perturbation series.
Separating sets of equation corresponding to different harmonics andwithin them termswith similar order of
perturbationwe obtain the nonlinear Schrodinger equation (NLSE) [23, 24]. Derivation of the 1d nonlinear
Schrödinger equation from the 3dmany-body plasma dynamics is qualitatively equivalent to study the 3-D
problem. Such a process helps to reduce themathematical rigours without losingmuch information. The
outline of the derivation is redundant and can be found in the literature [25–28].

The generalised Fourier expansion and perturbations are given as:

å y y= + + -f f f is f exp isexp . 6
s

s s0 [ ( ) ( )] ( )*

Here fs is the sth harmonic of thefield quantity ‘f’which can be velocity, density, potential etc f
s
* is the complex

conjugate of fs. The different harmonic quantities are separated from the set of normalised and scalarised
governing equations. The different harmonic field quantities are further expanded via a general perturbation
series given by:

e e e= + + + +f f f f f ..... 7s s
p

s
p

s
p

s0 1 2 3
1 2 3 ( )

Here pjʼs can be integral (odd or even) or fraction (successive or skipping) depending upon the strength and
nature of perturbations.

After series of algebraic exercise and sorting of ordered terms onefinally obtains the linear dispersion
relation from the lowest order terms in ò given by
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Here the coefficients are given as:
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3.2. Nonlinear schrodinger equation
Going to the higher order terms in ò one obtains theNLSE as:
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whereD andN are dispersive and nonlinear coefficients given by:
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The nonlinear Schrödinger equation (NLSE) is a fundamental equation in quantummechanics that
describes the behavior of wave functions in nonlinear systems. There are various types of solutions to theNLSE,
each revealing distinct physical phenomena.

(i) Soliton Solutions: Solitons are stable, localized wave packets that maintain their shape and amplitude during
propagation. They arise due to a balance between dispersion and nonlinearity.

(ii) Breather Solutions: Breathers are a subclass of solitons characterized by periodic oscillations in amplitude
andwidth. They represent localized excitations within a continuouswave background [29, 30].

(iii) Modulational Instability Solutions: This type of solution describes the growth of perturbations in the wave
amplitude over time, leading to the formation of localized structures.

(iv) Stationary States: These solutions represent stable, time-independent states where the wave function does
not evolve with time.
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Understanding andmanipulating these solutions are crucial for applications in various fields, including optics,
plasma physics, and condensedmatter physics.

3.3. Breathermode solution
The breather solution of the nonlinear Schrödinger equation (NLSE) represents a fascinating phenomenon in
the realmof nonlinear dynamics and quantummechanics. Unlike standard solutions, breathers are localized
and time-periodic structures that can persist in certain nonlinear systems. These solutions emerge due to the
delicate balance between dispersion and nonlinearity in theNLSE. The breather’s unique characteristics include
its ability to oscillate without spreading, forming a breather ‘packet.’This localized, pulsatingwave pattern is a
result of the interplay between attractive and repulsive forceswithin the nonlinearmedium. Since breather
solutions contributes to insights in diverse fields, including optics, condensedmatter physics, and plasma
physics we therefore keeping inmind our plasma problem into consideration investigate the Breather solution.
In this workwe focus on the Peregrine breathermode and theModulational Instability. Analytic solution of the
NLSE as given by Peregrine (Peregrine breathers)

⎡
⎣⎢

⎤
⎦⎥

f x t
t

t x
t=

+
+ +

-
D

N

iD

D
iD,

2 4 1 4

1 16 4
1 exp 2 . 10

2 2 2
( ) ( ) ( ) ( )

In the subsequent figures wewill show the evolutionary stages of Peregrine breathermodes (figure 2) and its
spatial and temporal variations (figure 3).We also study the obliquity dependence (figure 4) for weakly
relativistic case and δ (heavy nuclear charge density to that of lighter nuclei) dependence (figure 5) for ultra
relativistic case. These two cases are important because obliquity has effectively no influence on ultra relativistic
case and nuclear charge density for heavy and light nuclei has almost equal roles to play inweakly relativistic case.
The units are in normalised framework and since a hybrid normalization is used sometimes they aremore than
unity. The hybrid normalization is justified sincewe are interested to observe some details of themechanisms
and its dependence.

From thefigure 2we see that the Peregrine breather solitons corresponding to ultra-relativistic degenerate
plasma has a spread out temporal domain (a)–(b)when compared toweakly relativistic case (c)–(d) suggesting
less influence of dispersive factors. However in the case of spatial dependence of dispersive effects, the ultra-
relativistic case is narrowed out suggesting an almost non-changing breather width.When compared tofigures
(e–f)which correspond to thermal degeneracy, wefind that the dispersion ismainly spatial. To get a clear picture
of our evolutionarymechanismwe provide a 2-D depiction infigure 3. The temporal and spatial cross sections
are shown in sub-figures (a)–(f) respectively.We see that the nonlinear effect ismaximum initially and flattens
out as both space and time increases. This is relatable with the nature of breather solitons. Thesefiguresmake it
easy to understand the dependence of dispersive and nonlinear factors on space and time.

3.4.Modulational instability and the Benjamin Feir Index
In the preceding sectionwe have investigated the breathermode solutions for ultra &weakly relativistic case and
compared themwith the classical case. Now, under certain situations and thosewith starting from a planewave
and evolving into an envelop soliton solutionwhose amplitude is given by:

h x t f x t= +x w t-e c c,
1

2
, . . 11kc c( ) [ ( ) ] ( )( )

Hereωc and kc are the frequency and themagnitude of thewave-vector of the carrier wave respectively and
f(ξ, τ) is the slowly varying complex envelope. In this respect it becomes important to introduce the Benjamin-
Feir Index (BFI) expressed as:

f
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. 120

2

2
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HereΔω is the initial spectral bandwidth evaluated at τ= 0. Taking time average of the quantities we find

h x tá ñ = f x t,2 ,

2

2

( ) ( ) . It can be seen that large values of BFI lead to the formation of roguewaveswhich are

characterized by a heavy-tailed statistical distributionsmodulatedwaveform.
The strength of nonlinearity can be judged from the value f this BFI. To give a qualitative flavor of

how this parameter helps inmeasuring nonlinearity let us define two time scales given by: t w= DDlin
2( ) &

t f=-
-Nnon lin

1
0

2( ) The degree on nonlinearity of the propagating wave an thus be given by the BFI in the ratio
of these two time scales as:

t t= G = -BFI . 13lin non lin
1 2( ) ( )
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Or in terms of the carrier wavewavenumber (k0) as:

w w
= G =

D
BFI . 14

0

 ( )

Here = k I20 , I being the intensity of themodulatedwaveform.We present this section in order to relate this
type of theoretical workwith experimental observations and associated parameters.

4. Phase plane analysis & parametric dependence

Phase plane analysis is a valuable tool in understanding the behavior and stability of plasma systems, commonly
used in fusion research. In the context of plasma physics, a phase plane typically represents the evolution of two

Figure 2.Peregrine breathermodes and its contour plots for ultra-relativistic case (a), (b); weakly relativistic case (c), (d) and
comparisonwith classical case (e), (f).
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relevant variables, such as plasma density and temperature. Stability criteria in plasma systems are crucial for
ensuring controlled and sustainable fusion reactions.

Researchers employ phase plane analysis to study trajectories of plasma states and identify equilibrium
points. Stability is assessed by examining how small perturbations from these equilibriumpoints evolve over
time. Common stability criteria involve the consideration of Lyapunov stability, where trajectories either
converge to stablefixed points or diverge fromunstable ones.

In plasma physics [31–33], stability analysis informs the design and operation ofmagnetic confinement
devices like tokamaks. Understanding the phase plane behavior and applying stability criteria contribute to the
development of effective strategies for achieving andmaintaining stable plasma conditions in fusion
experiments.

We convert or nonlinear Schrodinger equation into a set of dynamical systems (DS) equations. The
transformation and theDS are given here.We use transformation of variables ζ andf as ζ= lxξ−Mτ

withM= ωc/kc and f z y z bz= exp i( ) ( ) ( ), withβ as a phase factor theNLSE takes the formof

Figure 3. Spatial andTemporal variation of Peregrine breathermodes for ultra-relativistic case (a), (b); weakly relativistic case (c), (d)
and comparisonwith classical case (e), (f).
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Upon integrating twicewith eta with boundary conditions the dynamical system equations arewritten as,
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In the followingfigures we present the phase portraits corresponding to different cases to study the
dependence of dynamical system equations corresponding toNLSE on various plasma parameters and draw

Figure 4.Variation of breather amplitudewith angle of inclination in theweakly relativistic case.HereσTe = 0.2,σe = 0.2, k = 0.2,
lx = 0.2, g = 5

3
,ω0 = 0.03, δ = 0.3.

Figure 5.Variation of breather amplitudewith heavy to light nuclear charge density ratio (δ) in the ultra relativistic case.Here
σTe = 0.2,σe = 0.2, k = 0.2, lx = 0.2, g = 5

3
,ω0 = 0.03, θ = 5°.
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valuable information from them. Thefigures and their captions are sufficient to explain the parametric
dependence. To contain the volume of ourmanuscript we do not carry out any individual discussions on the
dynamical systemplots, i.e. the phase portraits.

Infigure 6we see the phase portraits corresponding to theDS equations in ultra-relativistic (UR), weak-
relativistic (WR) and classical case.While there are evidence of limit cycle and fixed points, the separation of the
fixed points differ in case of ultra-relativistic, weak-relativistic and classical cases. The effect of thermal energy to
Fermi energy ratio (σTe) and ratio of rest energy to Fermi energy (σe) for ultra relativistic andweakly relativistic
cases are shown infigures 7–10 respectively.

Figure 6.Phase portraits of theNLSE in case of (a) ultra-relativistic (γ = 4/3), (b)weakly-relativistic (γ = 5/3) and (c) classical
(γ = 1) cases.HereσTe = 0.2,σe = 0.2, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.

Figure 7.Phase portraits of theNLSE in case of ultra-relativistic case for different values ofσTe; (a)σTe = 0.1, (b)σTe = 0.2 and
(c)σTe = 0.3Hereσe = 10, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.

Figure 8.Phase portraits of theNLSE in case of weakly-relativistic case for different values ofσTe; (a)σTe = 0.1, (b)σTe = 0.2 and
(c)σTe = 0.3Hereσe = 10, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.
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The effect of carrier wavewavenumber (k) forUR&WRcases are shown infigures 11 and 12.While in both
cases thefixed pointsmovewide apart, in case of UR situation the fixed pointsmove rapidly away from each
other. The angle of inclination of the plane of rotationwith respect to the axes represented by the directional
cosine (lx) is instrumental in intensifying/weakening the strength of the attractors, it can not alter the position of
thefixed points (figures 13 and 14). Further the orientation of the plane of rotationwith respect to themagnetic
axis represented by (θ) (figures 15 and 16), the speed of rotation (ω0) (figures 17 and 18) and the heavy-to-light
nuclear charge density ratio (δ) (19 and 20) has some impact on the formation of envelop solitons respectively.

Figure 9.Phase portraits of theNLSE in case of ultra-relativistic case for different values ofσe; (a)σe = 5, (b)σe = 10 and (c)σe = 15
HereσTe = 0.2, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3

Figure 10.Phase portraits of theNLSE in case of weakly-relativistic case for different values ofσe; (a)σe = 5, (b)σe = 10 and
(c)σe = 15HereσTe = 0.2, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.

Figure 11.Phase portraits of theNLSE in case of ultra-relativistic case for different values of wavenumber (k); (a) k = 0.2, (b) k = 0.4
and (c) k = 0.6.HereσTe = 0.2,σe = 10, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.
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Themagnetic field though crucial in confining the plasma, does not show significant changes in the nature and
properties of the phase portraits.

4.1. Interpretation of phase plane analysis
The followingfigures illustrate the phase portraits of theNonlinear Schrödinger equation (NLSE) for different
cases: ultra-relativistic, weakly relativistic, and classical. Eachfigure contains three subfigures corresponding to

Figure 12.Phase portraits of theNLSE in case of weakly-relativistic case for different values of wavenumber (k); (a) k = 0.2, (b) k = 0.4
and (c) k = 0.6.HereσTe = 0.2,σe = 10, lx = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.

Figure 13.Phase portraits of theNLSE in case of ultra-relativistic case for different values of directional cosines (lx); (a) lx = 0.2,
(b) lx = 0.4 and (c) lx = 0.6. HereσTe = 0.2,σe = 10, k = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.

Figure 14.Phase portraits of theNLSE in case of weakly-relativistic case for different values of directional cosines (lx); (a) lx = 0.2,
(b) lx = 0.4 and (c) lx = 0.6. HereσTe = 0.2,σe = 10, k = 0.2, θ = 5°,ω0 = 0.03, δ = 0.3.
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these cases, highlighting the dynamical behavior of the systemunder varying plasma parameters.We explain
them in point-wisemanner. Figure 6 shows the Phase Portraits of theNLSE for different case. viz. Ultra-
Relativistic Case (γ= 4/3),Weakly Relativistic Case (γ= 5/3) andClassical Case (γ= 1). Here other parameters
areσTe= 0.2,σe= 0.2, k= 0.2, lx= 0.2, θ= 5°,ω0= 0.03, δ= 0.3 respectively. In each scenario, fixed points
and limit cycles are evident, with notable differences in the separation offixed points across the cases. Figures 7
and 8 the effect ofσTe (Thermal to Fermi Energy Ratio) is discussed for two cases:

Figure 15.Phase portraits of theNLSE in case of ultra-relativistic case for different values of angle of inclination θ; (a) θ = 3°,
(b) θ = 5° and (c) θ = 7°. HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2,ω0 = 0.03, δ = 0.3.

Figure 16.Phase portraits of theNLSE in case of weakly-relativistic case for different values of angle of inclination θ; (a) θ = 3°,
(b) θ = 5° and (c) θ = 7°. HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2,ω0 = 0.03, δ = 0.3.

Figure 17.Phase portraits of theNLSE in case of ultra-relativistic case for different values of rotational frequencyω0 = 0.03;
(a)ω0 = 0.03, (b)ω0 = 0.05 and (c)ω0 = 0.07.HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2, θ = 5°, δ = 0.3.
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(i) Ultra-Relativistic Case (figure 7): As σTe increases from 0.1 to 0.3, the nature of the attractors and the
position of thefixed points are influenced.

(ii) Weakly Relativistic Case (figure 8): Similar changes are observed with an increase in σTe, but the degree of
separation offixed points differs from the ultra-relativistic case.

Figures 9 and 10 depicts the effect ofσe (Rest to Fermi Energy Ratio):

Figure 18.Phase portraits of theNLSE in case of weakly-relativistic case for different values of rotational frequencyω0; (a)ω0 = 0.03,
(b)ω0 = 0.05 and (c)ω0 = 0.07.HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2, θ = 5°, δ = 0.3.

Figure 19.Phase portraits of theNLSE in case of ultra-relativistic case for different values of heavy-to-light nuclear charge density
δ = 0.3; (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03.

Figure 20.Phase portraits of theNLSE in case of weakly-relativistic case for different values of heavy-to-light nuclear charge density
ratio δ = 0.3; (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.HereσTe = 0.2,σe = 10, k = 0.2, lx = 0.2, θ = 5°,ω0 = 0.03.
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(i) Ultra-Relativistic Case (figure 9): Increasing σe from 5 to 15 shows significant movement of fixed points
apart.

(ii) Weakly Relativistic Case (figure 10): Similar trends are observed, with fixed points shifting with increasing
σe.

Infigures 11 and 12 the effect ofWavenumber (k) is explained in:

(i) Ultra-Relativistic Case (figure 11): Increasing k from 0.2 to 0.6 leads to the rapid movement of fixed points
apart.

(ii) Weakly Relativistic Case (figure 12): Fixed points also move apart, but at a different rate compared to the
ultra-relativistic case.

Figures 13 and 14 shows the effect ofDirectional Cosines (lx):

(i) Ultra-Relativistic Case (figure 13): Variations inDirectional Cosines (lx) from0.2 to 0.6 affect the strength of
attractors without significantly altering the position offixed points.

(ii) Weakly Relativistic Case (figure 14): Changes in lx show similar influences as in the ultra-relativistic case.

Figures 15 and 16 shows the interesting effect of Angle of Inclination (θ):

(i) Ultra-Relativistic Case (figure 15): Variations in θ (3° to 7°) show noticeable impacts on the phase portraits,
altering the positions and nature offixed points.

(ii) Weakly Relativistic Case (figure 16): Similar effects are observedwith variations in θ.

Figures 17 and 18 shares information on the effect of Rotational Frequency (ω0):

(i) Ultra-Relativistic Case (figure 17): Increasing ω0 from 0.03 to 0.07 influences the formation and separation
offixed points.

(ii) Weakly Relativistic Case (figure 18): Changes inω0 show similar impacts as in the ultra-relativistic case.

Figures 19 and 20 illustrates the effect ofHeavy-to-LightNuclear ChargeDensity Ratio (δ):

(i) Ultra-Relativistic Case (figure 19): Variations in δ affect the phase portraits, influencing the formation of
envelope solitons.

(ii) Weakly Relativistic Case (figure 20): Similar trends are observedwith changes in δ.

4.2. Summary of results of the dynamical system
Thefigures collectively illustrate the dependence of theNLSE dynamics on various plasma parameters. The
ultra-relativistic, weakly relativistic, and classical cases exhibit different behaviors in terms offixed points and
limit cycles, influenced by parameters likeσTe,σe, k, lx, θ,ω0 and δ. These analyses are crucial for understanding
the nonlinear structures inmagneto-rotating stellar plasmas.

5. Conclusions

This theoretical work gives a qualitative understanding of the different nonlinear structures in the accretion discs
of stars and other stellar bodies which rotates in amagnetised environment.We have carried out an elaborate
mathematical and numerical analysis Tomaintain the features of the physical article we have not stuffed our
manuscript with thosemathematics. However parametric dependence has been shown though the phase
portrait analysis. The envelop soliton part was has been augmentedwith a breathermode type of solution and
themodulation instability has been discussed in the light of Benjamin-Feir Index. The importance of this work
can be understood in the light of star formation. Envelop soliton formation in stars and proto-stars is a
fascinating astrophysical phenomenon, occurringwithin the convective envelopes of these celestial bodies.
These solitons are localized, stable waves that propagate through the envelope, influencing energy transport and
internal dynamics. In stars, they play a crucial role in regulating heat transfer, impacting overall stellar evolution.
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Proto-stars, being in the early stages of formation, exhibit envelop solitons that contribute to the accretion
process and the establishment of stable structures. Understanding the intricate interplay of envelop solitons
sheds light on the complex dynamics within stars and proto-stars, offering insights into the broader context of
astrophysical processes. In this study, awarmdegeneratemagneto-rotating quantumplasma systemwas
examined to understand the nonlinear properties ofNuclear Acoustic Envelop Solitary waves (NAESs). The
system consisted of warmnon-relativistic or ultra-relativistic electrons, non-degenerate light nuclei, and a static
heavy nucleus, with rotation considered around the z-axis at a small speed. Various parameters such as
degenerate electrons, warmdegenerate parameter, rotational frequency, inclination angle, and the presence of a
static heavy nucleuswere investigated for their effects onNASWs’ generation, propagation, and characteristics.

Key findings include: The presence of non-relativistic or ultra-relativistic electrons supports the existence
and propagation of compressional NAESs.NAESs potential amplitude decreases with increased temperature in
degenerate non-relativistic plasma, while it increases with temperature in the presence of ultra-relativistic
electrons. Rotational frequency does not affectNAESs amplitude but decreases the potential width.NAESs
width increases with the inclination angle of rotation. The presence of a static heavy nucleusmodifiesNAESs’
features, with amplitude andwidth decreasingwith increased heavy nucleus density and charge state. The study
suggests applicability to hotwhite dwarfs and systems like neutron stars, broadening the investigation scope of
degeneratemagneto-rotating plasma systems.However, it did not explore non-planarNAESs potential or
arbitrary amplitudeNAESs. Additionally, quantum effects like Bohm term and spin effects were not considered,
indicating potential avenues for further research.
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Appendix

A.1. Normalization scheme
The normalization is carried out accordingly [22]:
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kB, εFe,Te, and 1/σe represent the Boltzmann constant, Fermi energy of the degenerate electrons, Temperature
of degenerate electrons, and relativity parameter respectively.

Note:Whenσe? 1 and γe= 5/3, the equation characterizes awarmnon-relativistic degenerate plasma
state. Conversely, to depict an ultra-relativistic degenerate plasma state, one should considerσe= 1 and
γe= 4/3 in theChandrasekhar equation of state [22]. It is evident that, for kTe= 1, corresponding to zero
temperature conditions (Te= 0 andσTe= 0), the electron number density equation simplifies to the cold
degeneracy limit. In the case of kTe= 1 and γe= 1 (representing a relativistic plasma system), the electron
number density adheres to the conventionalMaxwell-Boltzmann velocity distribution function.

A.2. Set of normalized governing equations in the scalar form
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